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Liquidity Risk and the Hedging Role of Options

This paper examines the impact of liquidity risk on the behavior of the competitive firm under price

uncertainty in a dynamic two-period setting. The firm has access to unbiased one-period futures

and option contracts in each period for hedging purposes. A liquidity constraint is imposed on the

firm such that the firm is forced to terminate its risk management program in the second period

whenever the net loss due to its first-period hedge position exceeds a predetermined threshold level.

The imposition of the liquidity constraint on the firm is shown to create perverse incentives to

output. Furthermore, the liquidity constrained firm is shown to optimally purchase the unbiased

option contracts in the first period if its utility function is quadratic or prudent. This paper thus

offers a rationale for the hedging role of options when liquidity risk prevails.

INTRODUCTION

Liquidity risk can be classified either as asset liquidity risk or as funding liquidity risk

(Jorion, 2001). Asset liquidity risk refers to the risk that the liquidation value of the assets

differs significantly from the prevailing mark-to-market value. Funding liquidity risk, on

the other hand, refers to the risk that payment obligations cannot be met due to inability

to raise new funds. Even for firms that are technically solvent, they may be obliged to go

bankrupt because of liquidity risk.1 As such, firms should take liquidity risk seriously when

devising their risk management strategies.2

The purpose of this paper is to examine the impact of funding liquidity risk on the

behavior of the competitive firm under price uncertainty (Sandmo, 1971) in general, and

on the hedging role of options in particular. To this end, Sandmo’s (1971) static one-

period model is extended to a dynamic two-period setting. Succinctly, the competitive

firm has access to unbiased one-period futures and option contracts in each period for

hedging purposes. Following Lien (2003) and Wong (2004a, 2004b), a liquidity constraint is

imposed on the firm such that the firm is forced to terminate its risk management program
1Prominent examples include the case of Metallgesellschaft and the debacle of Long-Term Capital

Management.
2According to the Committee on Payment and Settlement Systems (1998), liquidity risk is one of the

risks that users of derivatives and other financial contracts must take into account.
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in the second period whenever the net loss due to its first-period hedge position exceeds a

predetermined threshold level. The liquidity constraint as such truncates the firm’s payoff

profile. This truncation plays a pivotal role in shaping the firm’s optimal production and

hedging decisions.

In the absence of the liquidity constraint, the well-known separation and full-hedging

theorems of Danthine (1978), Holthausen (1979), and Feder, Just, and Schmitz (1980)

apply. The separation theorem states that the firm’s production decision depends neither

on the risk attitude of the firm nor on the incidence of the price uncertainty. The full-

hedging theorem states that the firm should completely eliminate its price risk exposure

by adopting a full-hedge via the unbiased futures contracts. A corollary of the full-hedging

theorem is that options play no role as a hedging instrument. The liquidity unconstrained

firm uses no options for hedging purposes.

The presence of the liquidity constraint forces the firm to terminate its risk management

program in the second period should the net loss due to its first-period hedge position exceed

the predetermined threshold level. This creates residual price risk that cannot be hedged via

the unbiased futures and option contracts. The firm, being risk averse, is shown to cut down

its production as an optimal response to the imposition of the liquidity constraint, a result

in line with that of Sandmo (1971). Furthermore, the firm is shown to optimally purchase

the unbiased call option contracts in the first period if its utility function is quadratic or is

prudent in the sense of Kimball (1990, 1993).3 Since the liquidity constraint truncates the

firm’s payoff profile, the firm finds the long call option position particularly suitable for its

hedging need.

This paper is related to the burgeoning literature on the hedging role of options. Mos-

chini and Lapan (1992) and Wong (2003a) show that export flexibility leads to an ex-

ante profit function that is convex in prices. This induced convexity makes options a

useful hedging instrument. Sakong, Hayes, and Hallam (1993), Moschini and Lapan (1995),
3The firm’s utility function is quadratic or is prudent in the sense of Kimball (1990, 1993) if the marginal

utility function is linear or convex, respectively. Unlike risk aversion that is how much one dislikes uncertainty
and would turn away from it if one could, prudence measures the propensity to prepare and forearm oneself
under uncertainty.
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Wong (2003b), and Lien and Wong (2004) show that firms facing both hedgeable and non-

hedgeable risks would optimally use options for hedging purposes. The hedging demand for

options in this case arises from the fact that the two sources of uncertainty interact in a

multiplicative manner, which affects the curvature of profit functions. Lence, Sakong, and

Hayes (1994) show that forward-looking firms use options for dynamic hedging purposes

because they care about the effects of future output prices on profits from future produc-

tion cycles. Frechette (2001) demonstrates the value of options in a hedge portfolio when

there are transaction costs, even though markets themselves may be unbiased. Futures

and options are shown to be highly substitutable and the optimal mix of them are rarely

one-sided. Lien and Wong (2002) justify the hedging role of options with multiple delivery

specifications in futures markets. The presence of delivery risk creates a truncation of the

price distribution, thereby calling for the use of options as a hedging instrument. Chang

and Wong (2003) theoretically derive and empirically document the merits of using cur-

rency options for cross-hedging purposes, which are due to a triangular parity condition

among related spot exchange rates. This paper offers another rationale for the hedging role

of options when liquidity risk prevails.

The rest of this paper is organized as follows. The next section delineates a two-period

model of the competitive firm facing both price uncertainty and liquidity risk. The firm

has access to unbiased one-period futures and option contracts in each period for hedging

purposes. The solution to the model is characterized to show the perverse output effect

of liquidity constraints. Furthermore, the firm’s optimal hedge position in the first period

is derived and the hedging role of options is established. A numerical example based on a

negative exponential utility function is constructed to help understand the findings. The

final section concludes. All proofs of propositions are relegated to the appendix.

THE MODEL

To incorporate liquidity risk into Sandmo’s (1971) model of the competitive firm under price
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uncertainty, the static one-period set-up is extended into a dynamic one. Succinctly, there

are two periods with three dates, indexed by t = 0, 1, and 2. To begin, the firm produces

a single output, Q, according to a cost function, C(Q), where C(0) ≥ 0, C ′(Q) > 0, and

C ′′(Q) > 0. The firm sells its entire output at t = 2 at the then prevailing spot price, P̃2, that

is not known ex ante.4 Interest rates in both periods, however, are known with certainty. To

simplify notation, the interest factors are henceforth suppressed by compounding all cash

flows to their future values at t = 2.

To hedge its exposure to the price risk, the firm can trade one-period futures and option

contracts at the beginning of each period. The firm is a price taker in the futures and

option markets that are populated by many risk-neutral speculators. To rule out arbitrage

opportunities, all futures and option contracts are unbiased. Specifically, each of the one-

period futures contracts calls for delivery of one unit of the output at the end of the period.

By convergence, the futures price at date t must be set equal to the spot price of the output

at that time, Pt, where t = 0, 1, and 2. Unbiasedness of the first-period futures contracts

implies that P0 is the expectation of P̃1. Likewise, given the realized spot price of the output

at t = 1, P̃1 = P1, unbiasedness of the second-period futures contracts implies that P1 is

the conditional expectation of P̃2. One can as such specify that P̃2 = P1 + ε̃, where ε̃ is a

zero-mean random variable conditionally independent of P̃1.

To show the hedging role of options, it suffices to consider only at-the-money call option

contracts in each period.5 The first-period call option contracts give the holder the right,

but not the obligation, to buy one unit of the output per contract at the end of the period at

the predetermined exercise price, P0. Likewise, given the realized spot price of the output

at t = 1, P̃1 = P1, the second-period call option contracts give the holder the right, but

not the obligation, to buy one unit of the output per contract at the end of the period at

the predetermined exercise price, P1. Unbiasedness of the one-period call option contracts

implies that the call option premium, Ct, is set equal to the expectation of max(P̃t+1−Pt, 0),

where t = 0 and 1.
4Throughout the paper, random variables have a tilde (∼) while their realizations do not.
5Put option contracts are not considered because they are redundant in that they can be readily replicated

by combinations of futures and call option contracts (Cox & Rubinstein, 1985).
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Let H0 and Z0 be the numbers of the first-period futures and call option contracts sold

(purchased if negative) by the firm at t = 0. At t = 1, the firm enjoys a net gain (or

suffers a net loss if negative) of (P0 −P1)H0−max(P1−P0, 0)Z0 from its first-period hedge

position, (H0, Z0). Following Lien (2003) and Wong (2004a, 2004b), the firm is liquidity

constrained in that it is forced to terminate its risk management program whenever the net

loss incurred at t = 1 exceeds a predetermined threshold level, K. Thus, if (P1 − P0)H0 +

max(P1 − P0, 0)Z0 > K, the firm’s random profit at t = 2 is given by

Π̃T = P̃2Q + (P0 − P1)H0 + [C0 − max(P1 − P0, 0)]Z0 − C(Q). (1)

On the other hand, if (P1 − P0)H0 + max(P1 − P0, 0)Z0 ≤ K, the firm continues its risk

management program in the second period so that its random profit at t = 2 becomes

Π̃C = Π̃T + (P1 − P̃2)H1 + [C1 − max(P̃2 − P1, 0)]Z1, (2)

where Π̃T is defined in Equation (1), and H1 and Z1 are the numbers of the second-period

futures and call option contracts sold (purchased if negative) by the firm at t = 1.

The firm possesses a von Neumann-Morgenstern utility function, U(Π), defined over its

profit at t = 2, Π, with U ′(Π) > 0 and U ′′(Π) < 0, indicating the presence of risk aversion.

The firm’s multi-period decision problem can be described in the following recursive manner.

At t = 1, if the net loss from its first-period hedge position, (H0, Z0), does not exceed the

threshold level, K, the firm is allowed to choose its second-period hedge position, (H1, Z1),

so as to maximize the expected utility of its random profit at t = 2, given by Equation

(2). At t = 0, anticipating the liquidity constraint at t = 1 and its second-period optimal

hedge position, (H∗
1 , Z∗

1), the firm chooses its output, Q, and its first-period hedge position,

(H0, Z0), so as to maximize the expected utility of its random profit at t = 2, given by

Equations (1) and (2).

SOLUTION TO THE MODEL

As usual, the firm’s multi-period decision problem is solved by using backward induction.
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At t = 1, if (P1 − P0)H0 + max(P1 − P0, 0)Z0 > K, the firm is forced to terminate its risk

management program and thereby no further hedging decisions can be made. On the other

hand, if (P1 − P0)H0 + max(P1 − P0, 0)Z0 ≤ K, the firm is allowed to choose its second-

period hedge position, (H1, Z1), so as to maximize the expected utility of its random profit

at t = 2:

max
H1,Z1

Eε[U(Π̃C)], (3)

where Eε(·) is the expectation operator with respect to the cumulative distribution function

of ε̃, and Π̃C is defined in Equation (2). The first-order conditions for program (3) are given

by

Eε[U ′(Π̃∗
C)(P1 − P̃2)] = 0, (4)

and

Eε{U ′(Π̃∗
C)[C1 − max(P̃2 − P1, 0)]} = 0, (5)

where an asterisk (∗) indicates an optimal level.6

If H1 = Q and Z1 = 0, Equation (2) implies that the firm’s profit at t = 2 becomes

P1Q + (P0 − P1)H0 + [C0 − max(P1 − P0, 0)]Z0 − C(Q), which is non-stochastic. Since

P1 = Eε(P̃2) and C1 = Eε[max(P̃2−P1, 0)], it follows that H∗
1 = Q and Z∗

1 = 0 indeed solve

Equations (4) and (5) simultaneously. When the firm can continue its risk management

program in the second period, there are no more liquidity constraints. In this case, the

full-hedging theorem of Danthine (1978), Holthausen (1979), and Feder, Just, and Schmitz

(1980) applies. As such, the firm finds it optimal to completely eliminate its price risk

exposure by adopting a full-hedge via the unbiased second-period futures contracts, i.e.,

H∗
1 = Q. There is no hedging role to be played by the second-period call option contracts,

i.e., Z∗
1 = 0.

Now go back to t = 0. Let F (P1) and f(P1) be the cumulative distribution function

and the probability density function of P̃1, respectively, over support [P 1, P 1], where 0 ≤

P 1 < P 1 ≤ ∞. If (P1 − P0)H0 + max(P1 − P0, 0)Z0 ≤ K, i.e., if P1 ≤ P0 + K/(H0 + Z0),

the firm anticipates that its optimal second-period hedge position is (H∗
1 = Q, Z∗

1 = 0) so
6The second-order conditions for program (3) are satisfied given risk aversion.
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that its random profit at t = 2 is given by

ΠC(P1) = P1Q + (P0 − P1)H0 + [C0 − max(P1 − P0, 0)]Z0 − C(Q). (6)

On the other hand, if (P1−P0)H0 +max(P1−P0, 0)Z0 < K, i.e., if P1 > P0 +K/(H0 +Z0),

the firm is forced to terminate its risk management program in the second period so that

its random profit at t = 2 becomes

ΠT (P1, ε) = (P1 + ε)Q + (P0 − P1)H0 + [C0 − max(P1 − P0, 0)]Z0 − C(Q). (7)

At t = 0, the firm’s ex-ante decision problem is to choose its output, Q, and its first-

period hedge position, (H0, Z0), so as to maximize the expected utility of its random profit

at t = 2:

max
Q,H0,Z0

∫ P0+ K
H0+Z0

P 1

U [ΠC(P1)] dF (P1) +
∫ P 1

P0+ K
H0+Z0

Eε{U [ΠT (P1, ε̃)]} dF (P1), (8)

where ΠC(P1) and ΠT (P1, ε) are defined in Equations (6) and (7), respectively. The first-

order conditions for program (8) are given by Equations (A.1), (A.2), and (A.3) in the

appendix, where Q∗, H∗
0 , and Z∗

0 are the optimal output, futures position, and call option

position, respectively.7

OPTIMAL PRODUCTION DECISIONS

This section examines the firm’s optimal production decision. As a benchmark, consider the

case that the firm faces no liquidity constraints, which is tantamount to setting K = ∞. It is

evident that the celebrated separation theorem of Danthine (1978), Holthausen (1979), and

Feder, Just, and Schmitz (1980) applies in this benchmark case. Specifically, the liquidity

unconstrained firm’s optimal output, Q0, solves C ′(Q0) = P0. The following proposition

compares Q∗ with Q0.
7The second-order conditions for program (8) are satisfied given risk aversion and the strict convexity of

C(Q).
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Proposition 1. If the firm has access to the unbiased one-period futures and call op-

tion contracts in each period, imposing the liquidity constraint on the firm creates perverse

incentives to output, i.e., Q∗ < Q0.

The intuition of Proposition 1 is as follows. If there are no liquidity constraints, the

firm’s random profit at t = 2 is given by Equation (6) only. In this case, the firm could

have completely eliminated its exposure to the price risk had it chosen H0 = Q and Z0 = 0

within its own discretion. Alternatively put, the degree of risk exposure to be assumed by

the firm should be totally unrelated to its production decision. The firm as such chooses

its output, Q, to maximize P0Q−C(Q), which yields Q0. This is the celebrated separation

theorem of Danthine (1978), Holthausen (1979), and Feder, Just, and Schmitz (1980). In

the presence of the liquidity constraint, setting H0 = Q and Z0 = 0 cannot eliminate all the

price risk due to the residual risk, ε̃Q, arising from the termination of the risk management

program at t = 1, as is evident from Equation (7). Such residual risk, however, can be

controlled by varying Q. Given risk aversion, the firm optimally produces less than Q0, a

result in line with that of Sandmo (1971).

OPTIMAL HEDGING DECISIONS

This section examines the firm’s first-period hedging decision. In the benchmark case where

the firm faces no liquidity constraints, it is evident that the well-known full-hedging theo-

rem of Danthine (1978), Holthausen (1979), and Feder, Just, and Schmitz (1980) applies.

Specifically, the firm’s optimal first-period hedge position, (H∗
0 , Z∗

0), satisfies that H∗
0 = Q∗

and Z∗
0 = 0, which completely eliminates the price risk exposure to the firm. Thus, the

liquidity unconstrained firm uses no options for hedging purposes.

To show the hedging role of options in the presence of liquidity constraints, consider

first a rather restrictive case in which U(Π) is quadratic, i.e., U(Π) = aΠ − bΠ2 for some

positive scalars, a and b, with U ′(Π) = a − 2bΠ > 0. The following proposition shows that
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the liquidity constrained firm still opts for a full-hedge via the first-period futures contracts,

i.e., H∗
0 = Q∗, but now it also purchases some of the at-the-money call option contracts at

t = 0 in order to improve the hedging performance.

Proposition 2. If the liquidity constrained firm has access to the unbiased one-period

futures and call option contracts in each period, the firm’s optimal first-period hedge position,

(H∗
0 , Z∗

0), satisfies that H∗
0 = Q∗ and Z∗

0 < 0 when the firm’s utility function is quadratic.

The intuition of Proposition 2 is as follows. Since Π∗
C(P1) = Eε[Π∗

T (P1, ε̃)] for all P1 ∈

[P 1, P 1] and U(Π) is quadratic, it follows from Equations (A.2) and (A.3) that

Cov[Π∗
C(P̃ ), P̃1] = Cov[Π∗

C(P̃ ), max(P̃1 − P0, 0)]. (9)

where Cov(·, ·) is the covariance operator with respect to F (P1). Using the fact that P1 −

P0 = max(P1 − P0, 0)− max(P0 − P1, 0), we can write Equation (9) as

Cov[Π∗
C(P̃ ), max(P0 − P̃1, 0)] =

∫ P 1

P 1

[Π∗
C(P1) − Π∗

C(P0)] max(P0 − P1, 0) dF (P1)

=
∫ P0

P 1

(P0 − P1)2(H∗
0 − Q∗) dF (P1) = 0, (10)

where the first equality follows from the fact that Π∗
C(P0) equals the expectation of Π∗

C(P̃1)

and the second equality follows from Equation (6) for all P1 ∈ [P 1, P0]. Equation (10) is

satisfied if, and only if, H∗
0 = Q∗. Substituting H∗

0 = Q∗ into Equation (A.3) and using the

fact that U(Π) is quadratic implies that Var[max(P̃1 − P0, 0)]Z∗
0 < 0, where Var(·) is the

variance operator with respect to F (P1). Thus, it must be the case that Z∗
0 < 0.

If the firm opts for the first-period hedge position, (H0 = Q∗, Z0 = 0), the firm faces no

price risk only when its risk management program is continued at t = 1, which occurs over

the interval, [P 1, P0 + K/Q∗]. To further improve the hedging performance, the firm has

incentives to purchase the at-the-money call option contracts, i.e., Z0 < 0, so as to enlarge

this interval to [P 1, P0 + K/(Q∗ + Z0)]. As such, options are used as a hedging instrument

when liquidity constraints prevail.
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Now relax the unduly restrictive condition of quadratic utility functions. As convincingly

argued by Kimball (1990, 1993), prudence, defined as U ′′′(Π) ≥ 0, is a reasonable behavioral

assumption for decision making under multiple sources of uncertainty. Prudence measures

the propensity to prepare and forearm oneself under uncertainty, in contrast to risk aversion

that is how much one dislikes uncertainty and would turn away from it if one could. As

shown by Leland (1968), Drèze and Modigliani (1972), and Kimball (1990), prudence is both

necessary and sufficient to induce precautionary saving. Moreover, prudence is implied

by decreasing absolute risk aversion, which is instrumental in yielding many intuitively

appealing comparative statics under uncertainty (Gollier, 2001). The following proposition

shows how the prudent firm would devise its first-period hedge position, (H0, Z0), in the

presence of the liquidity constraint.

Proposition 3. If the liquidity constrained firm has access to the unbiased one-period

futures and call option contracts in each period, the firm’s optimal first-period hedge position,

(H∗
0 , Z∗

0), satisfies that H∗
0 < Q∗ and Z∗

0 < 0 when the firm’s utility function exhibits

prudence.

The intuition of Proposition 3 is as follows. If the firm opts for the first-period hedge

position, (H0 = Q∗, Z0 = 0), the firm faces no price risk only when its risk management

program is continued at t = 1, as is evident from Equations (6) and (7). According to

Kimball (1990, 1993), the prudent firm is more sensitive to low realizations of its random

profit at t = 2 than to high ones. Given that H0 = Q∗ and Z0 = 0, the low realizations of

the firm’s random profit at t = 2 occur when the risk management program is terminated

at t = 1, which prevails over the interval, [P0 + K/Q∗, P 1], and when the realized values of

ε̃ at t = 2 are negative. To avoid these realizations, the firm has incentives to purchase the

at-the-money call option contracts, i.e., Z0 < 0, and reduce the first-period futures position,

i.e., H0 < Q∗, so as to increase the payoff of its first-period hedge position over the interval,

[P0, P1]. Doing so also shrinks the interval, [P0 + K/(H0 + Z0), P 1], over which the firm is

forced to terminate its risk management program at t = 1. Options are particularly useful
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for prudent firms facing liquidity constraints because of their asymmetric payoff profiles, vis-

à-vis the symmetric payoff profiles of futures. Thus, the prevalence of liquidity constraints

offers a rationale for the hedging role of options for prudent firm.

A NUMERICAL EXAMPLE

To gain more insights into the theoretical findings, a numerical example is offered. Suppose

that the firm has a negative exponential utility function, U(Π) = − exp(−Π), which exhibits

prudence. Set Q = K = 1, P0 = 5, and C(Q) ≡ 0. Let P̃1 = P0 + z̃, where z̃ is independent

of ε̃ and both of which are standard normal variates. Figure 1 depicts the surface of the

firm’s expected utility as a function of the first-period hedge position, (H0, Z0).

FIGURE 1

Expected utility surface for different futures and call option positions
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As is evident from Figure 1, the expected utility surface is rather flat. The maximum is

achieved when H0 and Z0 are approximately equal to 0.975 and −0.175, respectively. This

is consistent with the results in Proposition 3 that H∗
0 < Q∗ and Z∗

0 < 0

CONCLUSIONS

This paper has examined the impact of liquidity risk on the behavior of the competitive

firm under price uncertainty à la Sandmo (1971) in a dynamic two-period setting. The

firm has access to unbiased one-period futures and option contracts in each period for

hedging purposes. Following Lien (2003) and Wong (2004a, 2004b), a liquidity constraint is

imposed on the firm such that the firm is forced to terminate its risk management program

in the second period whenever the net loss due to its first-period hedge position exceeds a

predetermined threshold level. The liquidity constraint as such truncates the firm’s payoff

profile.

The imposition of the liquidity constraint on the firm is shown to create perverse in-

centives to output. Furthermore, the firm is shown to optimally purchase the unbiased call

option contracts in the first period if its utility function is quadratic or is prudent in the

sense of Kimball (1990, 1993). Due to their asymmetric payoff profiles, options are partic-

ularly suitable for the liquidity constrained firm’s hedging need. This paper thus offers a

rationale for the hedging role of options when liquidity risk prevails.
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APPENDIX

First-Order Conditions for Program (8)

The first-order conditions for program (8) with respect to Q, H0, and Z0 are respectively

given by

∫ P0+ K
H∗

0
+Z∗

0

P 1

U ′[Π∗
C(P1)][P1 − C ′(Q∗)] dF (P1)

+
∫ P 1

P0+
K

H∗
0
+Z∗

0

Eε{U ′[Π∗
T (P1, ε̃)][P1 + ε̃ − C ′(Q∗)]} dF (P1) = 0, (A.1)

∫ P0+ K
H∗

0
+Z∗

0

P 1

U ′[Π∗
C(P1)](P0 − P1) dF (P1)

+
∫ P 1

P0+
K

H∗
0
+Z∗

0

Eε{U ′[Π∗
T (P1, ε̃)]}(P0 − P1) dF (P1)

+
{

Eε

{
U

[
Π∗

T

(
P0 +

K

H∗
0 + Z∗

0

, ε̃

)]}
− U

[
Π∗

C

(
P0 +

K

H∗
0 + Z∗

0

)]}

×f

(
P0 +

K

H∗
0 + Z∗

0

)
K

(H∗
0 + Z∗

0)2
= 0, (A.2)

and

∫ P0+ K
H∗

0
+Z∗

0

P 1

U ′[Π∗
C(P1)][C0 − max(P1 − P0, 0)] dF (P1)

+
∫ P 1

P0+
K

H∗
0
+Z∗

0

Eε{U ′[Π∗
T (P1, ε̃)]}[C0 − max(P1 − P0, 0)] dF (P1)

+
{

Eε

{
U

[
Π∗

T

(
P0 +

K

H∗
0 + Z∗

0

, ε̃

)]}
− U

[
Π∗

C

(
P0 +

K

H∗
0 + Z∗

0

)]}

×f

(
P0 +

K

H∗
0 + Z∗

0

)
K

(H∗
0 + Z∗

0)2
= 0, (A.3)
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where Equations (A.2) and (A.3) follow from Leibniz’s rule, and an asterisk (∗) signifies an

optimal level.

Proof of Proposition 1

Adding Equation (A.2) to Equation (A.1) and rearranging terms yields

E[U ′(Π̃∗)][P0 − C ′(Q∗)] = −
∫ P 1

P0+
K

H∗
0
+Z∗

0

Eε{U ′[Π∗
T (P1, ε̃)]ε̃} dF (P1)

+
{

U

[
Π∗

C

(
P0 +

K

H∗
0 + Z∗

0

)]
− Eε

{
U

[
Π∗

T

(
P0 +

K

H∗
0 + Z∗

0

, ε̃

)]}}

×f

(
P0 +

K

H∗
0 + Z∗

0

)
K

(H∗
0 + Z∗

0)2
. (A.4)

where E[U ′(Π̃∗)] =
∫ P0+ K

H∗
0
+Z∗

0
P 1

U ′[Π∗
C(P1)] dF (P1) +

∫ P 1

P0+ K
H∗

0
+Z∗

0

Eε{U ′[Π∗
T (P1, ε̃)]} dF (P1).

If the firm faces no liquidity constraints, which is tantamount to setting K = ∞, it is evident

that the right-hand side of Equation (A.4) vanishes. Thus, in this hypothetical case, the

firm’s optimal output, Q0, solves C ′(Q0) = P0.

Now resume the original case wherein the firm faces the liquidity constraint, i.e., K <

∞. Note that Eε{U ′[Π∗
T (P1, ε̃)]ε̃} = Covε{U ′[Π∗

T (P1, ε̃)], ε̃}, where Covε(·, ·) is the covari-

ance operator with respect to the cumulative distribution function of ε̃. Note also that

∂U ′[Π∗
T (P1, ε)]/∂ε = U ′′[Π∗

T (P1, ε)]Q∗ < 0. Thus, the first term on the right-hand side of

Equation (A.4) is positive. Using Equations (6) and (7) and the fact that ε̃ has a mean

of zero yields Π∗
C [P0 + K/(H∗

0 + Z∗
0)] = Eε{Π∗

T [P0 + K/(H∗
0 + Z∗

0), ε̃]}. It then follows

from Jensen’s inequality and risk aversion that the expression inside the curly brackets of

the second term on the right-hand of Equation (A.4) is positive. Thus, the right-hand of

Equation (A.4) is unambiguously positive so that C ′(Q∗) < P0. The strict convexity of

C(Q) then implies that Q∗ < Q0.
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Proof of Proposition 2

Subtracting Equation (A.2) by Equation (A.3) yields

∫ P0+ K
H∗

0
+Z∗

0

P 1

U ′[Π∗
C(P1)][max(P0 − P1, 0)− C0] dF (P1)

+
∫ P 1

P0+
K

H∗
0
+Z∗

0

Eε{U ′[Π∗
T (P1, ε̃)]}[max(P0 − P1, 0)− C0] dF (P1) = 0, (A.5)

which follows from the fact that P0 − P1 = max(P0 − P1, 0) − max(P1 − P0, 0). Since P0

and C0 are the expectations of P̃1 and max(P̃1 −P0, 0), respectively, C0 is also equal to the

expectation of max(P0 − P̃1, 0).

Define the following:

M =
∫ P0+ K

H∗
0
+Z∗

0

P 1

U ′[Π∗
C(P1)] dF (P1) +

∫ P 1

P0+ K
H∗

0
+Z∗

0

Eε{U ′[Π∗
T (P1, ε̃)]} dF (P1), (A.6)

where M is simply the firm’s expected marginal utility at the optimum. Since C0 equals

the expectation of max(P0 − P̃1, 0), one can use Equation (A.6) to write Equation (A.5) as

∫ P0+
K

H∗
0
+Z∗

0

P 1

{U ′[Π∗
C(P1)]− M}[max(P0 − P1, 0)− C0] dF (P1)

+
∫ P 1

P0+ K
H∗

0
+Z∗

0

{
Eε{U ′[Π∗

T (P1, ε̃)]} − M

}
[max(P0 − P1, 0)− C0] dF (P1) = 0. (A.7)

Inspection of Equations (A.6) and (A.7) reveals that Equation (A.7) can be simplified to

∫ P0

P 1

{U ′[Π∗
C(P1)]− M}(P0 − P1) dF (P1) = 0. (A.8)

Since U(Π) is quadratic and ε̃ has a mean of zero, Equation (A.6) implies that M =

U ′[Π∗
C(P0)]. It follows from Equation (6) that Π∗

C(P1) = P1(Q∗−H∗
0 )+P0H

∗+C0Z
∗
0−C(Q∗)

for all P1 ∈ [P 1, P0]. Suppose that H∗
0 > (<) Q∗. Then, M > (<) U ′[Π∗

C(P1)] for all P1 ∈

[P 1, P0) so that the left-hand side of Equation (A.7) is negative (positive), a contradiction.

Hence, it must be the case that H∗
0 = Q∗ when the firm has a quadratic utility function.
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Using Equation (A.6), Equation (A.3) can be written as
∫ P0+ K

H∗
0
+Z∗

0

P0

{M − U ′[Π∗
C(P1)]}(P1 − P0) dF (P1)

+
∫ P 1

P0+
K

H∗
0
+Z∗

0

{
M − Eε{U ′[Π∗

T (P1, ε̃)]}
}
(P1 − P0) dF (P1)

+
{

Eε

{
U

[
Π∗

T

(
P0 +

K

H∗
0 + Z∗

0

, ε̃

)]}
− U

[
Π∗

C

(
P0 +

K

H∗
0 + Z∗

0

)]}

×f

(
P0 +

K

H∗
0 + Z∗

0

)
K

(H∗
0 + Z∗

0)2
= 0, (A.9)

The final term on the left-hand side of Equation (A.9) is negative given risk aversion. If

the firm’s utility function is quadratic, it follows that U ′[Π∗
C(P1)] = Eε{U ′[Π∗

T (P1, ε̃)]} and

M = U ′[Π∗
C(P0)]. Hence, the first two term on the left-hand side of Equation (A.9) can be

written as ∫ P 1

P0

{U ′[Π∗
C(P0)] − U ′[Π∗

C(P1)]}(P1 − P0) dF (P1). (A.10)

From Equation (6) and the fact that H∗
0 = Q∗, it must be the case that Π∗

C(P1) = Π∗
C(P0)−

(P1 − P0)Z∗
0 for all P1 ∈ (P0, P1]. Suppose that Z∗

0 ≥ 0. Then, Π∗
C(P1) ≤ Π∗

C(P0) for all

P1 ∈ (P0, P 1] so that expression (A.10) is non-positive. This implies that the left-hand side

of Equation (A.9) is negative, a contradiction. Hence, it must be the case that Z∗
0 < 0 when

the firm’s utility function is quadratic.

Proof of Proposition 3

Using Equations (6) and (7) and the fact that ε̃ has a mean of zero yields Π∗
C(P1) =

Eε[Π∗
T (P1, ε̃)]. It then follows from Jensen’s inequality and prudence that U ′[Π∗

C(P1)] <

Eε{U ′[Π∗
T (P1, ε̃)]}. Hence, Equation (A.6) implies that

M >

∫ P 1

P 1

U ′[Π∗
C(P1)] dF (P1) > U ′[Π∗

C(P0)], (A.11)

where the second inequality follows from prudence and the fact that Π∗
C(P0) equals the ex-

pectation of Π∗
C(P̃1). Suppose that H∗

0 ≥ Q∗. Then, ∂U ′[Π∗
C(P1)]/∂P1 = U ′′[Π∗

C(P1)](Q∗−
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H∗
0) ≥ 0 for all P1 ∈ [P 1, P0] so that M > U ′[Π∗

C(P1)]. In this case, the right-hand side of

Equation (A.8) is negative, a contradiction. Hence, it must be the case that H∗
0 < Q∗ when

the firm is prudent.

To facilitate the proof that Z∗
0 < 0, the firm’s ex-ante decision problem at t = 0 is

reformulated as a two-stage optimization problem, where the firm’s output is fixed at Q∗.

In the first stage, the firm’s demand for the first-period futures contracts, H0(Z0), is derived

for a given call option position, Z0. In the second stage, the firm’s optimal call option

position, Z∗
0 , is solved taking H0(Z0) as given. The complete solution to the firm’s ex-ante

decision problem is thus H∗
0 = H0(Z∗

0) and Z∗
0 .

Using Leibniz’s rule, the first-order condition for the first-stage optimization problem is

given by
∫ P0+ K

H0(Z0)+Z0

P 1

U ′[Π̂C(P1, Z0)](P0 − P1) dF (P1)

+
∫ P 1

P0+
K

H0(Z0)+Z0

Eε{U ′[Π̂T (P1, ε̃, Z0)]}(P0 − P1) dF (P1)

+
{

Eε

{
U

[
Π̂T

(
P0 +

K

H0(Z0) + Z0
, ε̃, Z0

)]}
− U

[
Π̂C

(
P0 +

K

H0(Z0) + Z0
, Z0

)]}

×f

[
P0 +

K

H0(Z0) + Z0

]
K

[H0(Z0) + Z0]2
= 0, (A.12)

where Π̂C(P1, Z0) and Π̂T (P1, ε, Z0) are defined in Equations (6) and (7) with Q = Q∗

and H0 = H0(Z0), respectively. The second-order condition for the first-stage optimization

problem is satisfied given risk aversion.

When Z0 = 0, if H0(0) = Q∗, the left-hand side of Equation (A.12) becomes
{

U ′[Π̂C(P0, 0)]− Eε{U ′[Π̂T (P0, ε̃, 0)]}
}∫ P 1

P0+ K
Q∗

(P1 − P0) dF (P1)

+
{

Eε{U [Π̂T (P0, ε̃, 0)]}− U [Π̂C(P0, 0)]
}
f

(
P0 +

K

Q∗

)
K

Q∗2 , (A.13)

where the first term of expression (A.13) follows from the fact that P0 is the expecta-
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tion of P̃1. Using Equations (6) and (7) and the fact that ε̃ has a mean of zero yields

Π̂C(P0, 0) = Eε[Π̂T (P0, ε̃, 0]}. It follows from Jensen’s inequality that U [Π̂C(P0, 0)] >

Eε{U [Π̂T (P0, ε̃, 0)]} and U ′[Π̂C(P0, 0)] < Eε{U ′[Π̂T (P0, ε̃, 0)]}. Thus, expression (A.13) is

negative, implying that H0(0) < Q∗.

Now proceed to the second-stage optimization problem of the firm, which can be stated

as

max
Z0

V (Z0) =
∫ P0+ K

H0(Z0)+Z0

P 1

U [Π̂C(P1, Z0)] dF (P1)

+
∫ P 1

P0+
K

H0(Z0)+Z0

Eε{U [Π̂T (P1, ε̃, Z0)]} dF (P1). (A.14)

Totally differentiating Equation (A.14) with respect to Z0 and evaluating the resulting

derivative at Z0 = 0 yields

V ′(0) =
∫ P0+ K

H0(0)

P 1

U ′[Π̂C(P1, 0)][C0 − max(P1 − P0, 0)] dF (P1)

+
∫ P 1

P0+
K

H0(0)

Eε{U ′[Π̂T (P1, ε̃, 0)]}[C0 − max(P1 − P0, 0)] dF (P1)

+
{

Eε

{
U

[
Π̂T

(
P0 +

K

H0(0)
, ε̃, 0

)]}
− U

[
Π̂C

(
P0 +

K

H0(0)
, 0

)]}

×f

[
P0 +

K

H0(0)

]
K

H0(0)2
, (A.15)

which follows from the envelope theorem and Leibniz’s rule. Substituting Equation (A.12)

with Z0 = 0 into the right-hand side of Equation (A.15) yields

V ′(0) =
∫ P0+ K

H0(0)

P 1

U ′[Π̂C(P1, 0)][C0 − max(P0 − P1, 0)] dF (P1)

+
∫ P 1

P0+ K
H0(0)

Eε{U ′[Π̂T (P1, ε̃, 0)]}[C0 − max(P0 − P1, 0)] dF (P1), (A.16)

which follows from the fact that P0 − P1 = max(P0 − P1, 0)− max(P1 − P0, 0).
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Define the following:

N =
∫ P0+ K

H0(0)

P 1

U ′[Π̂C(P1, 0)] dF (P1) +
∫ P 1

P0+ K
H0(0)

Eε{U ′[Π̂T (P1, ε̃, 0)]} dF (P1). (A.17)

Using Equation (A.17), Equation (A.16) can be written as

V ′(0) =
∫ P0+ K

H0(0)

P 1

{U ′[Π̂C(P1, 0)]− N}[C0 − max(P0 − P1, 0)] dF (P1)

+
∫ P 1

P0+ K
H0(0)

{
Eε{U ′[Π̂T (P1, ε̃, 0)]}− N

}
[C0 − max(P0 − P1, 0)] dF (P1), (A.18)

since C0 equals the expectation of max(P0 − P̃1, 0). Inspection of Equations (A.17) and

(A.18) reveals that Equation (A.18) can be simplified to

V ′(0) =
∫ P0

P 1

{N − U ′[Π̂C(P1, 0)]}(P0 − P1) dF (P1). (A.19)

Using Equations (6) and (7) and the fact that ε̃ has a mean of zero yields Π̂C(P1, 0) =

Eε[Π̂T (P1, ε̃, 0]}. It follows from prudence and Jensen’s inequality that U ′[Π̂C(P1, 0)] <

Eε{U ′[Π̂T (P0, ε̃, 0)]}. Thus, Equation (A.17) implies that

N >

∫ P 1

P 1

U ′[Π̂C(P1, 0)] dF (P1) > U ′[Π̂C(P0, 0)], (A.20)

where the second inequality follows from prudence and the fact that Π̂C(P0, 0) equals the

expectation of Π̂C(P̃1, 0). Since H0(0) < Q∗, ∂U ′[Π̂C(P1, 0)]/∂P1 = U ′′[Π̂C(P1, 0)][Q∗ −

H0(0)] < 0 for all P1 ∈ [P 1, P0]. Thus, it follows from inequality (A.20) that there must

exist a unique point, P̂1 ∈ (P 1, P0), such that N = U ′[Π̂C(P̂1, 0)]. Using Equation (A.17),

Equation (A.19) can be written as

V ′(0) =
∫ P0

P 1

{N − U ′[Π̂C(P1, 0)]}(P̂1 − P1) dF (P1)

+
∫ P0

P 1

{N − U ′[Π̂C(P1, 0)]} dF (P1)(P0 − P̂1). (A.21)

Since U ′[Π̂C(P1, 0)] > (<) N whenever P1 < (>) P̂1, the first term on the right-hand side

of Equation (A.21) is positive. Define the following:

NH =
∫ P0+ K

H0(0)

P 1

U ′[Π̂C(P1, 0)] dF (P1)
/

F

[
P0 +

K

H0(0)

]
. (A.22)
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Note that, for all P1 ∈ [P 1, P 1], ∂U ′[Π̂C(P1, 0)]/∂P1 = U ′′[Π̂C(P1, 0)][Q∗ − H0(0)] < 0 and

∂Eε{U ′[Π̂T (P1, ε̃, 0)]}/∂P1 = Eε{U ′′[Π̂T (P1, ε̃, 0)]}[Q∗ − H0(0)] < 0 since H0(0) < Q∗. It

follows that NH > N as NH is computed over [P 1, P0 + K/H0(0)], the low realizations of

P̃1. Using Equation (A.22) yields

∫ P0

P 1

{N − U ′[Π̂C(P1, 0)]} dF (P1)

= F

[
P0 +

K

H0(0)

]
(N − NH) +

∫ P0+ K
H0(0)

P0

{U ′[Π̂C(P1, 0)]− N} dF (P1). (A.23)

The first term on the right-hand side of Equation (A.23) is negative because NH > N . The

second term is also negative because N > U ′[Π̂C(P1, 0)] for all P1 ∈ [P0, P0 + K/H0(0)].

Hence, the second term on the right-hand side of Equation (A.21) is negative. Since V ′(0) <

0, it must be the case that Z∗
0 < 0 when the firm’s utility function exhibits prudence.
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Drèze, J. H., & Modigliani, F. (1972). Consumption decisions under uncertainty. Journal

of Economic Theory, 5, 308–335.

Feder, G., Just, R. E., & Schmitz, A. (1980). Futures markets and the theory of the firm

under price uncertainty. Quarterly Journal of Economics, 94, 317–328.



Liquidity Risk and the Hedging Role of Options 21

Frechette, D. L. (2001). The demand for hedging with futures and options. The Journal of

Futures Markets, 21, 693–712.

Gollier, C. (2001). The economics of risk and time. Cambridge, MA: MIT Press.

Holthausen, D. M. (1979). Hedging and the competitive firm under price uncertainty.

American Economic Review, 69, 989–995.

Jorion, P. (2001). Value at risk: The new benchmark for managing financial risk, 2nd ed.

New York, NY: McGraw-Hill.

Kimball, M. S. (1990). Precautionary saving in the small and in the large. Econometrica,

58, 53–73.

Kimball, M. S. (1993). Standard risk aversion. Econometrica, 61, 589–611.

Leland, H. E. (1968). Saving and uncertainty: The precautionary demand for saving.

Quarterly Journal of Economics, 82, 465–473.

Lence, S. H., Sakong, Y., & Hayes, D. J. (1994). Multiperiod production with forward and

options markets. American Journal of Agricultural Economics, 76, 286–295.

Lien, D. (2003). The effect of liquidity constraints on futures hedging. The Journal of

Futures Markets, 23, 603–613.

Lien, D., & Wong, K. P. (2002). Delivery risk and the hedging role of options. The Journal

of Futures Markets, 22, 339–354.

Lien, D., & Wong, K. P. (2004). Optimal bidding and hedging in international markets.

Journal of International Money and Finance, 23, 785–798.

Moschini, G., & Lapan, H. (1992). Hedging price risk with options and futures for the

competitive firm with production flexibility. International Economic Review, 33, 607–

618.

Moschini, G., & Lapan, H. (1995). The hedging role of options and futures under joint

price, basis, and production risk. International Economic Review, 36, 1025–1049.

Sakong, Y., Hayes, D. J., & Hallam, A. (1993). Hedging production risk with options.



Liquidity Risk and the Hedging Role of Options 22

American Journal of Agricultural Economics, 75, 408–15.

Wong, K. P. (2003a). Export flexibility and currency hedging. International Economic

Review, 44, 1295–1312.

Wong, K. P. (2003b). Currency hedging with options and futures. European Economic

Review, 47, 833–839.

Wong, K. P. (2004a). Hedging, liquidity, and the competitive firm under price uncertainty.

The Journal of Futures Markets, 24, 697–706.

Wong, K. P. (2004b). Liquidity constraints and the hedging role of futures spreads. The

Journal of Futures Markets, 24, 909–921.


